
COMO DAR EN EL BLANCO: ECUACIONES CINEMÁTICAS

PREDICIENDO EL MOVIMIENTO DE LOS PROYECTILES

¿Cómo puedes predecir la trayectoria de un proyectil?

- vertical (que tan alto llega la pelota)
- horizontal (que tan lejos llega la pelota)

Cuando lanzas una pelota de ping pong, su Esto muestra la velocidad (rapidez) de la pelota (v) y tres trayectoria () se mueve en dos direcciones: puntos en su trayectoria, separadas en direcciones "x" y **"y"** (∨_X ∨ ∨_V.)

EJE Y: MOVIMIENTO VERTICAL

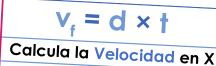
El punto más alto de la trayectoria de la pelota es la distancia vertical (d_v)

EJE Y: MOVIMIENTO HORIZONTAL

Que tan lejos llega la pelota es la distancia horizontal (d_x).

Mide el Tiempo Usa un cronómetro o fotopuerta para medir el tiempo que tarda la pelota en el aire.

Calcula la Velocidad en Y


v_f = velocidad final (eje y)

 v_i = velocidad inicial

t = tiempo

d = distancia (altura)

¡Si tienes las demás variables, calcular la velocidad es fácil!

v_f = velocidad final (eje X)

t = tiempo

d = distancia

COMO DAR EN EL BLANCO: ECUACIONES CINEMÁTICAS

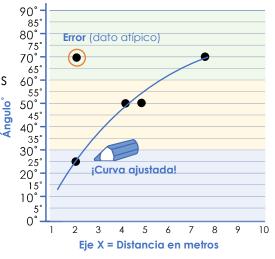
LANZAMIENTOS: RECOPILA TUS DATOS

Ajusta el **ángulo** de tu lanzador <u>tres</u> veces, realizando <u>tres</u> lanzamientos para cada ángulo.

Recolecta datos para el eje "y" y el eje "x".

Grafica la distancia a la que llegó cada tiro,
una gráfica nueva para cada ángulo de tiro.

Variables	Eje Y	Eje X	PHOTOGATE
Distancia	dy	d _x ¶	
Velocidad	Vy	V _X	
Aceleración	9.8 m/s ²	0 m/s ²	Una fotopuerta
Tiempo	†	t	arroja resultados
		(muy exactos.

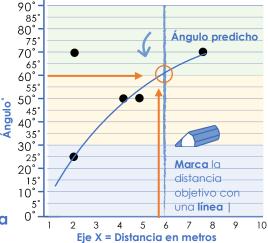

¡Toma tu mejor tiro!

GRÁFICA: LÍNEA AJUSTADA

Dibuja una **línea** o **curva ajustada** que siga (se ajuste) a la trayectoria de tus datos.

Datos de muestra				
25°	2 m	2 m		
50°	4 m	5 m		
70°	8 m	2 m		

Algunos tiros fallan.
Estos datos atípicos
están muy lejos de la
línea ajustada como
para incluirlos.


Un **cronómetro** también funciona (con menor exactitud).

PREDICE: DA EN EL BLANCO

Usando la gráfica, **predice** cuales ángulos acertarán a **la distancia del objetivo**.

Lanza con el ángulo predicho. Repite con más predicciones, ¡refina la línea/curva ajustada!

Usa otras distancias para encontrar otras variables en las ecuaciones de cinemática ¿Cómo afecta el ángulo a la velocidad?

Esta predicción del ángulo debería acertar la distancia objetivo. Si no aterriza ahí después de tres tiros, vuelve a realizar la gráfica ajustada.

¡Recuerda! Cada vez que rediseñas tu lanzador, haz otra gráfica. Nuevos diseños necesitan datos nuevos.