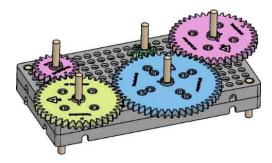


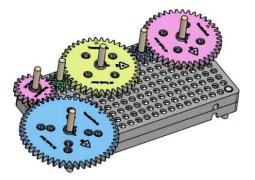
Name: _____

Date:

LAB MATERIALS

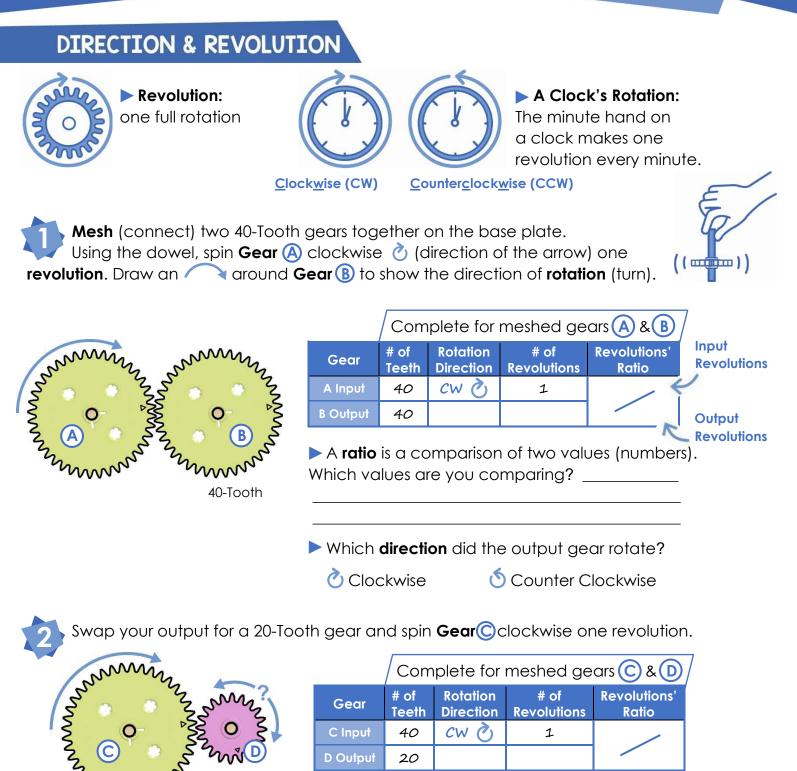
Make sure you built your Tinker Set with the Set-Up Guide. Find all our documents, including the Classroom Overview, at teachergeek.com/gears




PLAY!

Place gears into the **base**, so they mesh. Give a spin and see what happens. Try different combinations!

Be Careful:


If your gears are too close, or too far apart, they won't mesh.

RATIO & PROPORTION LAB GEARS

Complete for meshed gears (C) & (D) Rotation # of **Revolutions**' # of Gear Direction Teeth **Revolutions** Ratio C Input 40 CW 🕐 1 D Output 20

How did changing the output gear size affect the revolutions' ratio?

20-Tooth

Now, spin **Gear** (C) counter clockwise (5) one full revolution. Draw an \frown around **Gear** (**b**) to show the direction of rotation. manna

		Com	Complete for meshed gears \bigcirc & \bigcirc				
m	Gear	# of Teeth	Rotation Direction	# of Revolutions	Revolutions' Ratio		
S'S	C Input	40	ccw 🕑	1			
ND	D Output	20					

Did changing the direction of rotation affect the revolutions' ratio?

REDUCING RATIOS

Many ratios can be written with smaller numbers - this is called reducing, or simplifying.

Reduce both values. Divide each by the same common factor (number).

Reduce these ratios on your own: 10 reduced by _ 5 (common factor)

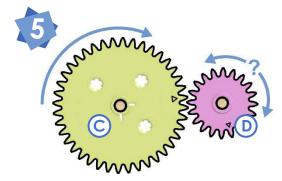
Find the common factor

that's divisible between the

input and output numbers.

11

3


12 6 4

3 2

30 reduced by

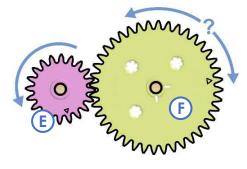
12 reduced by 6 (common factor)

5 (common factor)

Complete for me				eshed gears (C) & (D)		
Gear	# of Teeth	Rotation Direction	# of Revolutions	Revolutions' Ratio	Reduced Ratio	
C Input	40	cw 🕑	6			
D Output	20				K	

Reduce / to a Fraction

Reduced


Ratio

Teache

SWITCH IT UP!

Switch your 20-Tooth and 40-Tooth gears. Using a dowel, spin **Gear** (E) (now the **input**) clockwise.

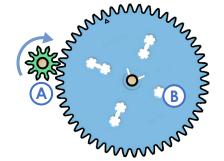
			Compl	ete for mes	hed gears	8F
	Gear	# of Teeth	Rotation Direction	# of Revolutions	Revolutions' Ratio	Reduced Ratio
	E Input	20	cw 📀	6		
	F Output	40				
from before						

How did switching input and output gear size affect the revolutions' ratio?

GEAR TEETH RATIO

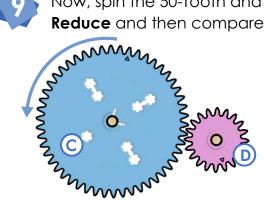
Teeth allow gears to mesh and indicate gear **size**. Look at the **tooth ratio** of your meshed gears. How does it compare to the revolutions' ratio?_____

Reduce the tooth ratio values:		Reduce	the	tooth	ratio	values:	
--------------------------------	--	--------	-----	-------	-------	---------	--


- 40/40 tooth reduces to: ____ / ____
- 40/20 tooth reduces to: ____ / ____
- 20/40 tooth reduces to: ____ / ____
- Predict for other gear combinations:

10/40 tooth reduces to: ____ / ____

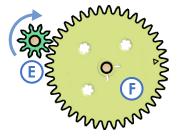
- 10/50 tooth reduces to: ____ / ____
- 50/20 tooth reduces to: ____ / ____


Comparing the number of **teeth** in one gear to another is called **gear ratio**. Spin the 10-Tooth and 50-Tooth gear combination on the base. **Reduce** and then compare the results to your above predictions.

Gear		Rotation Direction	# of Revolutions	Revolutions' Ratio	Reduced Ratio
A Input	10	Cw 🕑	12		
B Output	50				

Was the reduced ratio the same as the tooth ratio?

> Now, spin the 50-Tooth and 20-Tooth gear combination on the base. **Reduce** and then compare the results to your above predictions.



Gear	# of Teeth	Rotation Direction	# of Revolutions	Revolutions' Ratio	Reduced Ratio
C Input	50	ccw 🕉	12		
D Output	20				

Was the reduced ratio the same as the tooth ratio?

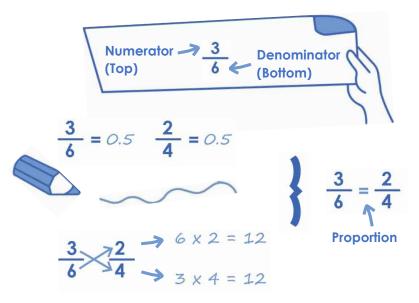
10

Now, spin the 10-Tooth and 40-Tooth gear combination on the base. **Reduce** and then compare the results to your above predictions.

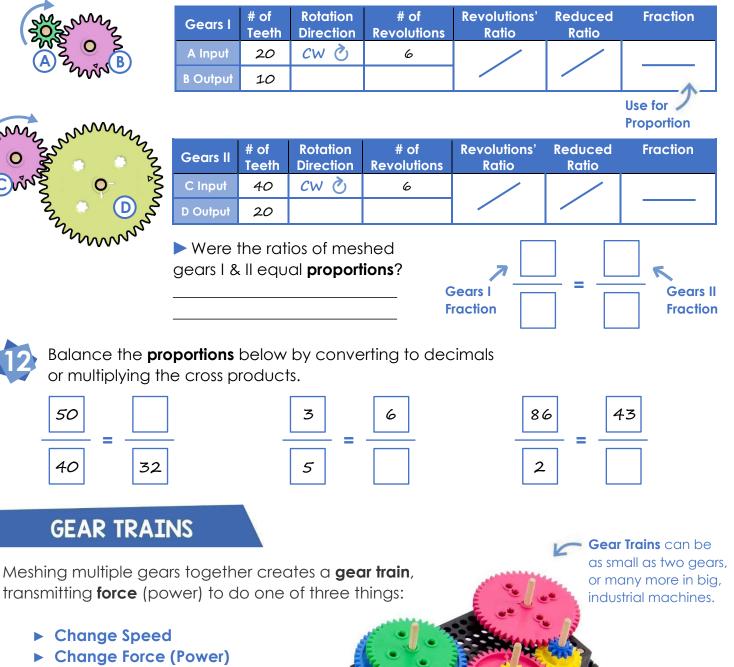
Gear	# of Teeth	Rotation Direction	# of Revolutions	Revolutions' Ratio	Reduced Ratio
E Input	10	CW 🕑	12		
F Output	40				

Was the reduced ratio the same as the tooth ratio?

PROPORTIONS

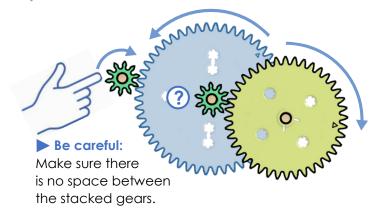

A proportion is an equation showing that two ratios are equal.

□ Choice #1:


Convert ratios into **decimal**s by dividing the **numerator** by the **denominator**.

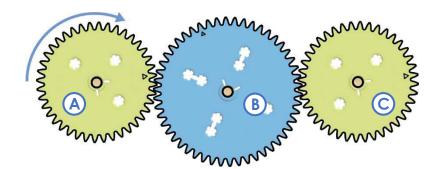
□ Choice #2:

Determine a **cross product** by multiplying the **numerator** of one fraction by the **denominator** of another fraction.


> Spin the gear combinations to determine their ratio. Write it as a **fraction**. The input's revolutions are the **numerator**, while the output's the **denominator**.

Change Direction

Compound gear trains are attached gears that rotate around the same **center**.


Create a **compound gear** by stacking a 10-Tooth on a 50-Tooth Gear and meshing the 10-Tooth with a 40-Tooth gear that has **slide stop** on its dowel.

Clockwise 👌 Counter Clockwise 🕥

Mesh two 40-Tooth gears on either side of a 50-Tooth gear on the base plate. Spin Gear (A) clockwise (2) one full **revolution**. Draw an (1) around Gear (B) and Gear (C) to show their directions of **rotation**.

A gear inserted between two or more gears is known as the **idler-wheel**. It works to keep the direction of rotation of the input and output gears the same, without affecting **gear ratio**.

Which gear in the gear train above acts as the idler-wheel? Why? _____

Gear	# of Teeth	Rotation Direction	# of Revolutions
A Input	40	CW 🕑	1
B Output	50		
C Output	40		

► The revolutions' ratio for Gear (A) and Gear (B)? ______ : _____

► The revolutions' ratio for Gear B and Gear ? _____: ____.

Multiply the two ratios together.
(;) × (;)
=: (reduce if you can).

TIM