

Wind is an amazing energy source! Use the power of the wind to lift objects. This Build Guide a nd Lab activities will help you create your own Wind Lift.

This is the LS (leam stuff) Build Guide. To do this a ctivity "just for fun" download the JFF documents at teachergeek.com/leam

This packet includes the Build Guide and the Labs. Download the Challenge documents at teachergeek.com/leam

Tecacherceseg
 Build Guide
 What do you need to know

to make something out of TeacherGeek?

Quick Tip!

Use a crayon, or soap on the end of a Dowel to make building easier.

Use a hammer and slider block to tap dowels farther thru holes.

Ream

Most parts have holes with teeth. The teeth hold dowels ((keep dowels from falling out).

Never ream pulleys, gears, wheels, or any hole a dowel stays stuck into.

More resources available at teachergeek.com.
Adult supervision required for children 12 and under.

TeacherGeek Components

Here are the TeacherGeek materials you'll need to build each Wind Lift.
Availa ble as single: SKU 1823-14 or 10 pack: SKU 1823-15. Both include extra parts for your own innovative creations!

$x 4$			0 x1	 x2	(10) ${ }^{\text {x2 }}$
Perpendic ular Blocks	300 mm (12") Dowels	Hole Plate	$100 \mathrm{~mm}\left(3^{\prime \prime}\right)$ Slide Stop	$\begin{gathered} \text { 5/8" or 1" } \\ \text { \#10 Screw } \end{gathered}$	\#10 Nut
x1	x1	x1			x1
5/8' \# 6 Screw	Mini Hub Cover	Mini Hub Base	150mm (10') Skewers	Wire Roll or 4.5" section	Portion Cup

TeacherGeek Tools You'll Need

 Easy to ShareIn Groups Tools can be shared between classes and groups. Time to break out those tools and start build ing! Remember to be kind and share with others.

Multi-Cutter
SKU 1823-81

Reamer
SKU 1823-87

Screwdriver
SKU 1823-90

Pliers
SKU 1823-86

Materials You Supply

Here are some non-TeacherGeek materials that you will need.

Tape

String
450mm (1.5ft)

100 or more
Pennies to lift

Recyc ling Materials
(forblades)

Let's Get Started

0
Attach two perpendic ular blocks to the hole plate using two \#10 screws a nd \#10 nuts.

3. Push the dowels from Step 2 thru the pemendic ularblocks a nd hole plate from Step 1.

(2)Tap two dowels into the middle hole of two perpendic ular blocks.

4 Cut a dowel to $13 \mathrm{~cm}\left(6^{\prime \prime}\right)$. Insert it into the uprights as shown.

Do not Ream

©
Ream the two holes marked with the $\boldsymbol{\theta}$ symbol.

6Cut a dowel to $250 \mathrm{~mm}\left(10^{\prime \prime}\right)$ and a slide stop to $6 \mathrm{~mm}\left({ }^{(1 / 4}{ }^{\prime \prime}\right)$. Then slide the slide stop $5 \mathrm{~mm}\left(2^{\prime \prime}\right)$ up the dowel.

7

Insert the dowel from Step 6 into the mini hub base.

8
Attach the mini hub coverto the mini hub base using a \#6 screw.

(6)
\#6 Screw

Mini Hub Cover

10Tape a 45 cm (1.5 ft) string onto the dowel with the hub assembly.

Buind Lift चिकिः्धिध
 Bulld Guide LS]

into the reamed holes of Step 5.

©Insert hub assembly from Step 8

(11)Punch two holes on opposite sides of a portion cup and attach a $120 \mathrm{~mm}\left(4^{1 / 4} \mathrm{~m}^{1}\right)$ wire thru the portion cup holesto create a handle.

(1)Attach the string from Step 10 to the wire handle from Step 11 and secure a slide stop to the back end of the dowel.

Wind lift nean
Build Guide

Blade Designs

It's now time to make your blades. Make the example blades shown below.
Experiment with them, use them to complete the lab (optional), and then change them into your own unique design.

Cut the points off the skewers.

Find materials for your blades like recycled materials, poster board, card board, plastic, etc.

You will also need tape

(16)
Attach the blade material (cardboard, card stock, cereal box material) to the skewers using tape.

a. Cut a section of blade

c. Face sticky side up and place a skewer at the edge of the blade material, overhanging to one side.

b. Place the tape half over the edge of the blade material.

d. Fold the tape overthe skewer to secure to the blade material.

Wind Lift
 Butld Guide LS

16Attach the blades to the hub by loosening the screw (about a $1 / 4$ tum) to allow the skewerto slide in.

How many blades do you want?

The hub will hold a nywhere between 1 and 6 blades.

Re-tighten the screw when blades are properly positioned.

Up Next

Congratulations!

Your example Wind Lift is complete. Now it's time to leam more about your Wind Lift in the Labs.

Move on to the Energy, Blade Angle and Area Labson the next pages.
After you've finished, download the Design \& Engineering Challenge doc uments at teac hergeek.com/leam and take your Wind Lift even higher.

Wind Lift
 Energy Lab

Name(s): \qquad
Make sure you have built a TeacherGeek Wind Lift, before starting this lab.
Energy is the ability to do work
Potential energy is stored energy. It is as the result of its position.
Kinetic Energy is the energy of motion. If an object is moving, it has kinetic energy.

Write the letters to match the type of energy shown above. Use letters only once.

1. \qquad shows potential energy tuming into kinetic energy
2. \qquad shows potential energy as a result of height
3. \qquad shows kinetic energy that came from electricity
4. \qquad shows the kinetic energy of blowing air; from the potential energy of the bucket
5. Put something heavy in the bucket. Wind up the bucket by hand (without the fan) a nd let it drop. Notice how fast blades spin and how much air is pushed. Now put something light in the bucket. Wind it up and let the bucket drop. What's different? Figure it out. Expla in it to your tea cher using these, a nd other words:

Potential Energy \square Kinetic Energy \square More Energy \square Less Energy

Teacher Signature \qquad

© TeacherGeek Inc.

Wind lift 2 want Angle Lab

Name(s):
Make sure you have built a TeacherGeek Wind Lift, before starting this lab.

1. Hypothesis: How do you think changing the angle of the Wind Lift Blades will affect the number of pennies it can lift?
\qquad
\qquad

Many wind turbines change the angle of their blades to adjust to wind conditions.

Test your Hypothesis

Test how many pennies your wind turbine can pick up, at different blade angles.

0° Blade Angle

2. What happens when the blade is at 0° ?
\qquad
\qquad
\qquad
\qquad
\qquad
30° Blade Angle

3. How many pennies can it lift at 30° ?
\qquad
4. How long does it take to lift the bucket?

Change the Blade Angle

A. Loosen the hub screw a little bit; so the bladescan tum, but do not fall out.
B. Change the blade angle using a protractor.
C. Tighten the screw up again.
90° Blade Angle
7. What happens when the blade is at 90° ?
6. How long does it take to lift the bucket?

5. How many pennies can it lift at 60° ?

$$
\text { the bla de is at } 90^{\circ} ?
$$

\qquad
 Angle Lab
8. Was your hypothesis correct? Please explain why, or why not (don't just write "yes" or "no").
9. The wind turbine shown on the right was da ma ged from high winds. What did you leam from your blade angle tests that could have helped this wind turbine? What would you have it do in high winds to protect the blades?
\qquad
\qquad
\qquad
\qquad

10. Write the names of the components shown below. Note: Blade is not an a nswer.
\qquad
\qquad

Name(s):
Make sure you have built a TeacherGeek Wind Lift, before starting this lab.

1. Hypothesis: How do you think the Wind Lift blade area affects the number of pennies that can be lifted?

Get Ready

Make sure that your bla des are $23 \mathrm{~cm} \times 5 \mathrm{~cm}$. If they are not, cut new blades and tape them on. They should be like this.

Some wind turbines/wind mills have blades with a lot of area. Other wind turbines have blades with very little area.

Change the blade angle by: A. Loosening the hub screw a little bit; so the bladescan tum, but do not fall out. B. Changing the blade angle using a protractor. C. Tightening the screw up again.

Blac Wind Lift えֹఓex Area Lob

Test your Hypothesis: How does blade a rea affects the number of pennies that can be lifted?

Use your 5 cm wide blades.

2. What is the combined area of all of the blades?
3. What is the maximum number of pennies that can be lifted?
4. How long does it take to lift the bucket?
\qquad sec onds

Cut your blades to 3 cm wide.

5. What is the combined area of all of the blades?
6. What is the maximum number of pennies that can be lifted?
7. How long does it take to lift the bucket?
\qquad seconds

Cut your blades to $\mathbf{1} \mathbf{c m}$ wide.

8. What is the combined area of all of the blades?
9. What is the maximum number of pennies that can be lifted?
10. How long does it take to lift the bucket?
seconds
11. Wa s your hypothesis correct? Please expla in why, or why not (don't just write "yes" or "no").

