How does the height that a car starts at on a ramp affect the distance it rolls? Let’s find out…

What will you need to do this lab?
• Racer (Rolling Car)
• Ramp
• Tape measure.

Potential & Kinetic

Potential Energy is stored energy. It’s ready to be released into kinetic energy.

Kinetic Energy is the energy of an object’s motion. It’s doing work.

1. Draw a \(\text{car} \) on the picture below, where it would have the most potential energy.

2. Draw a \(\text{car} \) on the picture below, where it would have the most kinetic energy. Use an \(\rightarrow\) if you need to show that the car is moving.
3. Write the letters on the lines below that correspond to the bike on the hill.

___ Get Ready to Roll... The bike now has the most potential energy

___ Peddle Hard... Kinetic energy is changed into potential energy

___ Hold On... Potential energy has completely changed into kinetic energy

___ Get Ready... There is no potential, or kinetic energy

___ Faster & Faster... Potential is being converted into kinetic energy

4. Draw the graph to show the difference in potential and kinetic energy when the bow is **pulled back**.

5. Draw the graph to show difference in potential and kinetic energy when the arrow **has been shot**.
Variables: The things that change in an experiment.

Independent Variable: The thing you change in the experiment, to test how it affects the dependent variable. Only have one independent variable in your experiment.
Example: Amount of water given to the plant

Dependent Variable: The variable being tested and measured. Only have one dependent variable in your experiment.
Example: Height of plant

Controlled Variables: The things that should not change in an experiment.
Example: Amount of sun, soil, temperature

Below are variables that will be part of your ramp roll experiment. Indicate what type they are by placing a letter in the box.

I = Independent, D = Dependent, C = Control

- Height \(\text{car starts on ramp} \)
- Mass (weight) of car
- Friction from the surface the car rolls on
- Angle of the ramp
- Distance the car travels
- Car Design
Question: How does the **height** that a car starts at on a ramp affect the distance it rolls?

7 **Label** the graph with the independent and dependent variables for the experiment.

8 **Test car** at different ramp heights:
 a) Start with the car wheels behind a mark
 b) Let the car go, without a push
 c) Measure how far it rolls
 d) Record the distance traveled on the graph using a dot
 e) Test your car at each height, up to 3 times. Put a new dot on the graph for each test. Only use data from good tests (don’t use it if car hits a wall or runs over a foot)
Create a line of best fit on your graph. This is a straight line that best represents your scattered dots. The line may pass through some of the dots, none of the dots, or all of the dots.

Was the car’s starting height and the distance it rolled, linear? Linear means: to take the shape of a straight line, or nearly straight line.

How did the height that your car started at on the ramp affect the distance it rolled? Properly use the terms “potential energy” and “kinetic energy” in your answer.

In this experiment you changed “height” as the independent variable. What other variables could you change to make your car go farther?

Bonus: Why did your racer stop rolling? Where did the energy go? Hint... research friction.