THE CHALLENGE

Design and build a kinetic sculpture with your gears and pulleys tinker set.

Kinetic Energy is energy in motion. With your gears and pulleys, you can harness this energy to power animated sculptures and art that interacts. Art doesn't have to stay flat – Alexander Calder's **mobiles** rotated and spun.

- Make sure you have built a Tinker Set for use on this challenge.
- Cut out the example gears and pulleys below to plan your design. Use an engineering notebook page to sketch out ideas.
- Tap a dowel into each gear or pulley's center hole use different heights depending on what you want higher in your sculpture.
- Attach drawings, fabric or clay figures to the dowels. Note the direction of rotation – how can you make art, interact?

Challenge Supplies

Gears and Pulleys Tinker Set with base, dowels, sculpture materials (paper, clay, pipe cleaners, string, recycled materials), glue, tape

The Engineering Design Process:

You will be using the **Engineering Design Process**. What does that mean? Your design is never finished (it can always be improved). There is no such thing as a perfect design. Fill out a new *Engineering Notebook* page each time you design/redesign your **Gears & Pulleys Tinker Set**.

CherGe

hummin

Sinin

in min

Cut the gears and pulleys on the dotted line. Don't worry about the gear teeth. Use the paper cut-outs to experiment with designs and ideas for your tinker sets and sculptures.

n's

leacherGeek

TeacherGeek

These wings flap back and forth.

EXAMPLES

Kinetic Sculptures can do more than just spin – use your gears and pulleys' direction of rotation to make art that interacts.

> These bees circle the flower and each other.

> > Use recycling bin innovation to hide or add mechanisms.

ZOOPRAXISCOPE

The **Zoopraxiscope** (invented by Eadweard Muybridge) was the first movie projector. Drawings on the circle blur and "move" when **rotated** by a center dowel. How could you animate your kinetic sculptures? With boxers in a ring, or twirling ballet dancers?

THE CHALLENGE

Design a gears and pulleys inspired attraction for the hip, new theme park **Darren Lake**.

PROCEDURE

- Make sure you have built a Tinker Set for use on this challenge.
- Cut out the example gears and pulleys below to plan your design. Use an engineering notebook page to sketch out ideas.
- Your attraction <u>must</u> utilize gears and pulleys in its operation. Demonstrate with your TeacherGeek tinker set how you can change speed and direction, or transmit force.
- Do not mesh gears with pulleys on the same base if combined in your attraction's design, keep each separate.

You will have ______ to complete the challenge.

Challenge Supplies

Gears and Pulleys Tinker Set with base, dowels, cut out sheet, Engineering Notebook Pages, pencil, pen

The Engineering Design Process:

You will be using the **Engineering Design Process**. What does that mean? Your design is never finished (it can always be improved). There is no such thing as a perfect design. Fill out a new *Engineering Notebook* page each time you design/redesign your **Gears & Pulleys Tinker Set**.

CHALLENGE IDEAS

These ideas are just to get you started – what else can you design for an amusement park using gear and pulley sets?

Rock Your Roller Coaster Control the thrills on your personal roller coaster design. Roller coaster cars have no power source of their own.

They reach thrilling speeds using **gravity**, **kinetic energy**, **gears** and **pulleys** to lift, transmit force and increase speed.

Potential Energy is stored energy, ready to be put in motion.

How could you get coaster cars to the top of the incline (lift hill)?

Swingin' Party Down the Line

Whee! Try not to get sick on this whirling rotary ride. Chair swing rides tilt and whirl, flying guests in circles. The transfer of force through **pulley systems** use **simple** and **cross belt positions** to pull and drag.

How could you use pulleys to lift and lower loads (chairs)?

► Around and Around We Go!

Is there anything more relaxing than a spin on a Ferris Wheel?

Passengers complete one full wheel **revolution** each trip, much like a giant gear. Smaller **input gears** transmit power over distance, allowing the wheel to turn.

How would you change the wheel's direction?

DESIGN PROCESS

hummer

Sketch, Write and Design your park attraction ideas below.

► Need More Room? Print Extra Engineering Notebook Sheets: teachergeek.org/engineering_notebook.pdf Sun i

mm