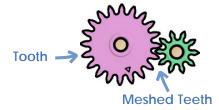
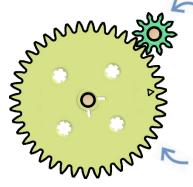


Name: ______ Set: ____ Date: _____


LAB MATERIALS

What you need to complete this lab.


Make sure you have a "built" Gears and Pulleys Tinker Set before starting this lab. The build guide can be found teachergeek.com/learn

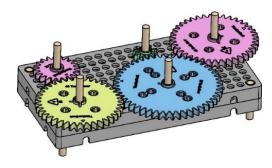
WHAT IS A GEAR?

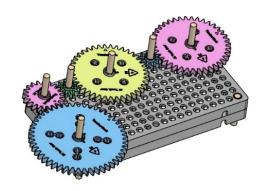
A **gear** is a wheel with **teeth**. The teeth **mesh** (connect) with other gears, to make them turn together.

Input Gear:

The gear that is powered (turned by you).

Output Gear:


The gear that gets powered (turned by the other gear).


PLAY!

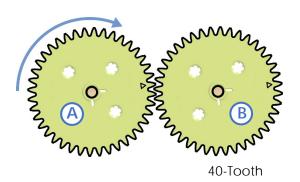
Place gears into the **base**, so they mesh. Give a spin and see what happens. Try different combinations!

► Be Careful:

If your gears are too close, or too far apart, they won't mesh.

➤ A Clock's Rotation:

The minute hand on a clock makes one revolution every minute.

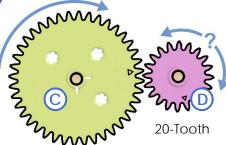

Counter Clockwise (CCW)

DIRECTION & REVOLUTION

Mesh (connect) two 40-Tooth gears together on the base plate.

Using the dowel, spin Gear (A) clockwise (direction of the arrow) one revolution. Draw an around Gear (B) to show the direction of rotation (turn).

_	/ Com	Complete for meshed gears (A) & (B)					
Gear	# of Teeth	Rotation Direction	# of Revolutions	Revolutions' Ratio			
A Input	40	cw 👌	1				
B Output	40						

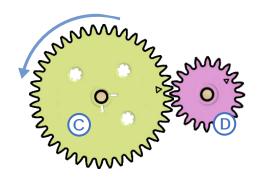

Input Revolutions

Revolutions pers).

- ➤ A ratio is a comparison of two values (numbers).
 Which values are you comparing? _____
- ► Which direction did the output gear rotate?
 - **O** Clockwise
- **Ounter Clockwise**

Swap your output for a 20-Tooth gear and spin **Gear**© clockwise one revolution.

Complete for meshed gears © & D


	Com	Complete for meshed gears (C) & (D)					
Gear	# of Teeth	Rotation Direction	# of Revolutions	Revolutions' Ratio			
C Input	40	cw 👌	1				
D Output	20						

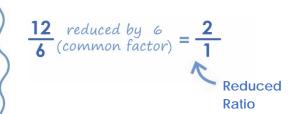
➤ How did changing the **output gear** size affect the revolutions' ratio?

3

Now, spin **Gear** © counter clockwise one full revolution. Draw an around **Gear** to show the direction of rotation.

	Com	Complete for meshed gears © & D/					
Gear	# of Teeth	Rotation Direction	# of Revolutions	Revolutions' Ratio			
C Input	40	ccw o	1				
D Output	20						

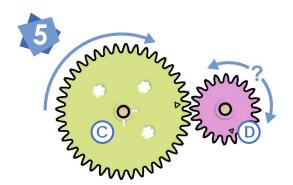

➤ Did changing the **direction of rotation** affect the revolutions' ratio?


REDUCING RATIOS

- ➤ Many ratios can be written with smaller numbers – this is called reducing, or simplifying.
- ➤ Reduce both values.

 Divide each by the same common factor (number).

Find the **common factor** that's divisible between the **input** and **output** numbers.

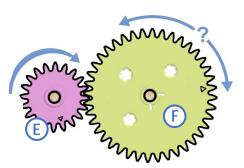


Reduce these ratios on your own:

$$\frac{10}{5}$$
 reduced by $\underline{}$

$$\frac{30}{15}$$
 reduced by ___ = ___

Complete for meshed gears © & D						
Gear	# of Teeth	Rotation Direction	# of Revolutions	Revolutions' Ratio	Reduced Ratio	
C Input	40	cw 👌	6			
D Output	20				_	
					Reduce)	


to a Fraction

SWITCH IT UP!

Switch your 20-Tooth and 40-Tooth gears. Using a dowel, spin **Gear** (E) (now the **input**) clockwise.

_		Complete for meshed gears E&F				
Gear	# of Teeth	Rotation Direction	# of Revolutions	Revolutions' Ratio	Reduced Ratio	
E Input	20	cw &	6			
F Output	40					
	1					

Inverse from before

► How did switching input and output gear size affect the revolutions' ratio?

GEAR TEETH RATIO

Teeth allow gears to mesh and indicate gear **size**. Look at the **tooth ratio** of your meshed gears. How does it compare to the revolutions' ratio?

 	_	_		_
Reduce	tho	tooth	ratio	Values
Reduce	uie	loolii	Tallo	values.

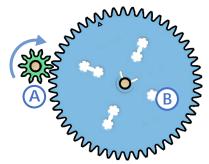
40/40 tooth reduces to: ____ / ____

40/20 tooth reduces to: ____ / ____

20/40 tooth reduces to: ____ / ____

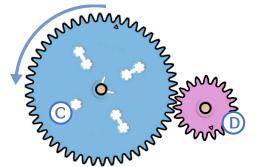
▶ Predict for other gear combinations:

10/50 tooth reduces to: ____ / ___


50/20 tooth reduces to: ____ / ____

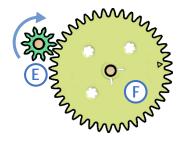
10/40 tooth reduces to: ____ / ____

Comparing the number of **teeth** in one gear to another is called **gear ratio**. Spin the 10-Tooth and 50-Tooth gear combination on the base. **Reduce** and then compare the results to your above predictions.


Gear	# of Teeth	Rotation Direction	# of Revolutions	Revolutions' Ratio	Reduced Ratio
A Input	10	cw &	12		
B Output	50				

Was the reduced ratio the same as the tooth ratio?

Now, spin the 50-Tooth and 20-Tooth gear combination on the base. **Reduce** and then compare the results to your above predictions.



Gear	# of Teeth	Rotation Direction	# of Revolutions	Revolutions' Ratio	Reduced Ratio
C Input	50	ccw o	12		
D Output	20		_		

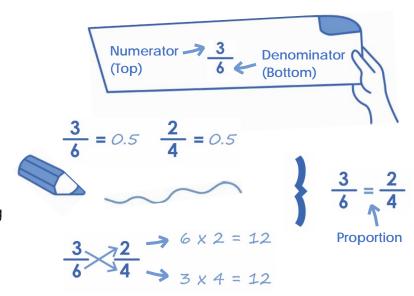
▶ Was the reduced ratio the same as the tooth ratio?

Now, spin the 10-Tooth and 40-Tooth gear combination on the base. **Reduce** and then compare the results to your above predictions.

Gear	# of Teeth	Rotation Direction	# of Revolutions	Revolutions' Ratio	Reduced Ratio
E Input	10	cw &	12		
F Output	40				

► Was the reduced ratio the same as the tooth ratio?

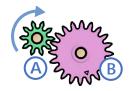
PROPORTIONS

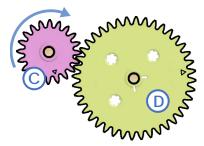

► A **proportion** is an equation showing that two ratios are **equal**.

□ Choice #1:

Convert ratios into **decimal**s by dividing the **numerator** by the **denominator**.

□ Choice #2:


Determine a **cross product** by multiplying the **numerator** of one fraction by the **denominator** of another fraction.



Spin the gear combinations to determine their ratio. Write it as a **fraction**. The input's revolutions are the **numerator**, while the output's the **denominator**.

Gears I	# of Teeth	Rotation Direction	# of Revolutions	Revolutions' Ratio	Reduced Ratio	Fraction
A Input	10	CW &	6			
B Output	20					
						Han fan

Use for / Proportion

Gears II	# of Teeth	Rotation Direction	# of Revolutions	Revolutions' Ratio	Reduced Ratio	Fraction
C Input	20	cw &	6			
D Output	40					

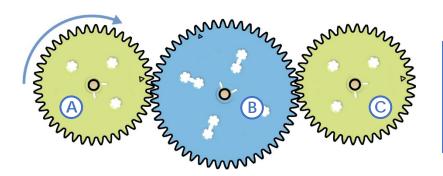
Were the ratios of meshed gears I & II equal proportions?

7		K
Gears I Fraction	= 	Gears II Fraction

Balance the **proportions** below by converting to decimals or multiplying the cross products.

5

86



GEAR TRAINS

Mesh two 40-Tooth gears on either side of a 50-Tooth on the base plate. Spin **Gear** (A) clockwise (b) one full **revolution**. Draw an (a) around **Gear** (B) and **Gear** (C) to show their directions of **rotation**.

Gear	# of Teeth	Rotation Direction	# of Revolutions
A Input	40	cw &	1
B Output	50		
C Output	40		

	The revolutions'	ratio for Gear 🥖	and Gear ?	:	
--	------------------	-------------------------	-------------------	---	--

The revolutions'		<u></u>		0	
The revenue itions?	ratio tor	(-Aar(R)	and (-aarii)	•	
THE REVOIDED IS	ratio roi	Ocai (b)			

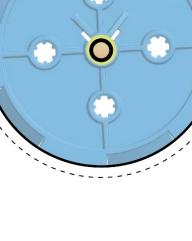
Multiply the two ratios together.		
(:) x (::)) =::	(reduce if you can).

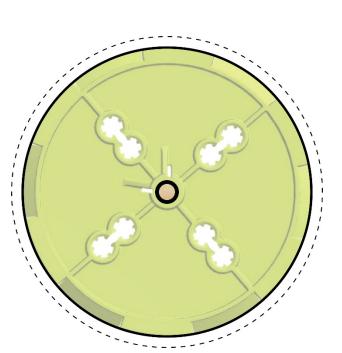
A gear inserted *between* two or more gears is known as the **idler-wheel**. It works to keep the direction of rotation of the input and output gears the same, without affecting **gear ratio**.

Which	gear in	the train	n to the	right	acts a	s the ic	ller-wh	eel?
Why?								
,								



CUTTING ACTIVITY





Cut out the gears and pulleys on the dotted line. Don't worry about the teeth - just cut on the circle. Use them to help design gear trains and pulley sets.

