FLUID POWER LAB

Name \qquad
Set: \qquad

IMPERTAL UNITS EDTTION PSI \& lbs/in²

This lab will provide you an understanding of:

- Hydraulic Systems
- Kinetic \& Potential Energy
- Pneumatic Systems
- Cylinders
- Pascal's Law
- Liquids \& Gases
- Mechanical Advantage
- Friction
- Viscosity
- Work
- Pressure

FLUTD POWER LAB

TEACHERGEEK SUPPLIES YOU'LL NEED

Cut or find tubing the following lengths to use later in Activity Build Guides and Design \& Engineering Challenges. Do not connect anything yet.
First we're going to experiment a bit with pressure.

Fluid Power Activity Pack/Maker Cart

Hydraulic Arm - Basic

Hydraulic Arm - Advanced

4 - cylinder screws

When it's time, refer to the end of this lab for help assembling your pneumatic and hydraulic systems.

FUUD POWER LAB

FLUID POWER

Fluid power is an area of technology dealing with the generation, control, and transmission of pressurized fluids. A fluid can be a gas or a liquid.

PNEUMATICS

Pneumatic systems use a gas to transmit and store power.

Pneumatic Devices

HYDRAULICS

Hydraulic systems use a liquid to transmit power.

1. List two devices, other than the ones above, that use pneumatics for operation. Describe how they use pneumatics.

How does it use pneumatics?

Hydraulic Devices

2. List two devices, other than the ones above, that use hydraulics for operation. Describe how they use hydraulics.
[^0]
FLUID POWER LAB

CYLINDERS

Cylinders transform pressure and fluid-flow into mechanical force.

Anatomy of a Cylinder

Chambers (A) and (B) are sealed, fluids can only enter or exit through the ports. Pressure in a chamber creates a force on the piston.

Double-Acting Cylinders

Most cylinders are double-acting. Double-acting cylinders allow pressurized fluid to flow on either side of the piston, allowing it to be powered in both directions.

Single-Acting Cylinders

Single-acting cylinders are only powered in one direction.
The piston is returned by the weight of the load or a spring.

The pumps that power cylinders can usually only create a positive fluid pressure (push fluid). That is why most cylinders, like the ones shown above, are designed to only be powered by positive fluid pressure.

FLUTD POWER LAB

Your Cylinders Will Push \& Pull

You will use a cylinder as a pump. The cylinder will be able to push fluid (creating a positive pressure), or pull fluid (creating a negative pressure). This will allow your cylinders with a single port to be powered in both directions.

the correct answers below:

1. There is $a \square$ Positive pressure in line (2).
2. Cylinder (\odot) is \square Pulling fluid.

Know Your Parts

3. Match the components with their name by placing letters into the boxes below.
Piston: \square

Fluid Port: \square

FLUTD POWER LAB

WHAT IS PRESSURE?

Pressure is a force applied over an area:
Pressure $=\frac{\text { Force }}{\text { Area }}$

The area over which
the force is applied.

Step One
 Push the piston end of a cylinder against your hand.

Step Two

Push the fluid port end of a cylinder against your hand.

4. Both ends of the cylinder were pushed against your hand with the same force. Explain why they felt different? HINT: Pressure = Force/Area

Putting Your Foot Down

A foot pushes down on a 3in ${ }^{3}$ cube with $451 b s$ of force.

5. How much pressure does the cube apply to the ground? show your work.
\square

FLUTD POWER LAB

FIND THE UNKNOWN

Let's look at another way to write the formula:

$$
\text { Pressure }=\frac{\text { Force }}{\text { Area }} \text { can be written as: } \begin{array}{|c|c|c|}
\hline \mathbf{F} & \begin{array}{l}
\mathbf{P}=\text { Pressure } \\
\mathbf{F}=\text { Force } \\
\mathbf{A}=\text { Area }
\end{array}
\end{array}
$$

Cover the missing variable on the chart to find the formula to calculate it:

You know: Pressure, Area You need to find: Force

Force $=$ Pressure - Area

You know: Force, Area
You need to find: Pressure

Pressure $=$ Force/Area

You know: Pressure, Force You need to find: Area

Area = Force / Pressure
6. Pressure transfers between the piston and the fluid in the cylinder. Calculate the force of the piston when the fluid applies $20 \mathrm{lbs} / \mathrm{in}^{2}$ to it.

Finger trapping air in cylinder

MEASUREMENTS OF PRESSURE

Answer: \square psi
lbs/in ${ }^{2}$ (psi)
A force of 1 pound applied over an area of 1 square inch produces a pressure of 1 pound per square inch (1lb/in²)

pounds per square inch can be abbreviated as "psi"

Pascal (Pa)
A force of 1 newton applied over an area of 1 square meter produces a pressure of 1 pascal.

Show your work.

Use this chart to find the formula to calculate a missing variable (force, pressure, area).

FLUTD POWER LAB

PASCAL'S LAW

Pascal's Law: a confined fluid transmits an externally applied pressure uniformly in all directions.

Piston (A) applies pressure to the fluid inside chamber (B). The fluid transmits the pressure in every direction and to every surface it touches.
7. If the pressure is 5psi in chamber © ${ }^{B}$,
what is the pressure in line © and chamber (D) ?

Squeezing a toothpaste tube is an example of Pascal's Law.
Squeezing applies external pressure to the toothpaste fluid inside. The toothpaste transmits the force equally in all directions, pushing paste out and making the tube walls bulge.

Pressurizing Marshmallows

Pull the piston out from the cylinder and place one small marshmallow inside the chamber.

Push the piston in while covering the fluid port with your finger. What happens to the marshmallow?

Push the piston in with your finger off the port.

Put your finger over the port and pull the piston back. Watch the marshmallow.
8. What happened to the marshmallow?
9. Why, according to Pascal's Law, did the marshmallow equally grow and shrink on all sides?

FLUID POWER LAB

CALCULATING PRESSURE

Example Calculation

Your Calculation

10. Calculate the pressure inside the cylinder.

Formulas:

Area of a circle $=\boldsymbol{\pi} \cdot$ Radius 2

$$
\begin{aligned}
& \mathbf{P}=\text { Pressure } \\
& \mathbf{F}=\text { Force } \\
& \mathbf{A}=\text { Area }
\end{aligned}
$$ cylinder and find the area of its piston (do not measure the drawing on this paper or use the example area value).

Show your work below:
\square

FLUID POWER LAB

PNEUMATIC PLAY

You will need a $14 \mathrm{ml}-14 \mathrm{ml}$ pneumatic system for this section.
Refer to the end of the lab for assistance assembling.

11. The pistons move \square to each other.
12. Piston (B) moves \square than piston (A) (the piston you pushed and pulled) due to air compressing.
13. The pressure applied by piston (A) \square through the
\square (air) to piston (B), applying a \square causes piston (B) to move.

FUUTD POWER LAB

PNEUMATIC PLAY

Use the same $14 \mathrm{ml}-14 \mathrm{ml}$ pneumatic system as before.

15. The pressure applied by the pistons \square the air in the cylinders and line.
16. \square means the same thing as lbs/in².
17. Compressed air has \square (stored) energy.
18. After pushing both pistons in, quickly let go of one piston. The piston you let go moves outward with \square energy.

FLUTD POWER LAB

SHARING PRESSURE \& FLUID

How does fluid pressure transfer between cylinders? How can a force applied to one piston cause the other piston to move? Fill in the boxes below to find out.

Piston C Applies Pressure

19. Complete the formula to find the pressure applied by piston ©

20. Pressure inside chamber (G)= \square psi

Fluid Transfers the Pressure

21. Pressure is transmitted from chamber (G) through line \square to chamber \square
22. Pressure inside chamber $\oplus \rightarrow$ \square psi

Piston (D) Turns Pressure into Force

23. The fluid pressure applied to piston (D) = \square
24. Complete the formula to find the force of piston (D):

Master \& Slave Cylinders

25. The cylinders above can be referred to as a master cylinder and slave cylinder. Why do you think cylinder ${ }^{(B)}$ is referred to as the slave cylinder?

FUUTD POWER LAB

FRICTION

Friction is a force that opposes the motion of an object, when the object is in contact with another object or surface. It turns some of the object's kinetic energy into heat.

(A) Grip the cylinder.
(B) Push and pull the piston 30 times, as fast as you can.
26. What happens to the cylinder as you move the piston? Why does this happen?

When liquid flows in a hydraulic circuit, friction produces heat (wasted energy).

How can you reduce friction in your hydraulic system?
Shorten the lines
Reduce bends in the line Properly size the line
27. Draw a line that would highly resist the flow of fluid between cylinders:

VISCOSITY

Viscosity: a measure of a fluid's resistance to being deformed. Viscosity is a fluid's resistance to flowing. It can also be called its thickness.

28. Write the following words in the boxes below in order of least viscous to most viscous: Milk, Honey, Air, Peanut Butter

FLUID POWER LAB

NON-NEWTONIAN FLUIDS

Fluids without a constant viscosity are called "Non-Newtonian" fluids. You can experience a Non-Newtonian fluid, here's how:

Mix two cups cornstarch with one cup water.

$$
+\quad \begin{aligned}
& \text { A fluid that changes } \\
& \text { viscosity depending on } \\
& \text { the pressure applied to it. }
\end{aligned}
$$

BONUS POINTS

Find a new use (good use) for a Non-Newtonian fluid. Present it to your class.

HYDRAULICS

Now we will use a liquid to transmit power between cylinders.
For the remainder of the lab, you will need $14 \mathrm{ml}-14 \mathrm{ml}$ and $4.5 \mathrm{ml}-14 \mathrm{ml}$ hydraulic systems. Refer to the end of the lab for help.

Hydraulic Book Work

Create the mechanism shown. Pushing piston © ${ }^{(A)}$ should lift the book.
29. Show your teacher the completed mechanism. Explain how it changes force to pressure, transfers the pressure, and then changes it back to force.

Teacher Signature

30. Push in piston (A) 5 cm , piston (B) moves $\square \mathrm{cm}$ out of cylinder () .
31. Pull back piston (A) 5 cm , piston (B) moves \qquad into cylinder (४).
32. Pneumatic fluid is highly compressible. How compressible is hydraulic fluid?
33. When you push piston (A), piston (B) moves immediately. How is that different than the pneumatic system you previously used?

FLUTD POWER LAB

Bubbles are Bad

34. Why is it bad to have air bubbles in a hydraulic system?
\square

Air bubbles will not compress, but hydraulic fluid will.
\square

The air in the system will expand or contract, causing the system to become delayed and transfer less pressure.
\square You can giggle and say that it "has gas".

WORK

The scientific definition of work: using a force to move an object a distance.

Work on Work

Forklifts use hydraulics to perform work (moving loads).
35. If schools used the scientific definition for work, what would homework be?
36. The diagram on the right shows cylinders that have lifted weights.

Place an under the cylinder that has done the most work.

FUUD POWWR LAB

MECHANICAL ADVANTAGE

Mechanical Advantage is the relationship between the work going into a system, and work coming out of a system.

A nutcracker allows you to apply a force larger than you could with your bare hand.

IMA vs. AMA

Some energy will be lost by a machine (mostly through friction).

Ideal Mechanical Advantage (IMA) does not account for any energy lost.

$$
\text { Work }_{\text {in }}=\text { Work }_{\text {out }} \text { with IMA }
$$

Actual Mechanical Advantage (AMA) accounts for energy lost.

$$
\text { Work }_{\text {out }}<\text { Work }_{\text {in }} \text { with AMA }
$$

Ideal Mechanical Advantage

Work = Force • Distance

37. Calculate the output force:

Force $_{\text {in }}$ - $^{\text {Distance }_{\text {in }}}=$ Force $_{\text {out }}{ }^{\bullet}$ Distance $_{\text {out }}$
250lbs 25in \square 10in

FLUID POWER LAB

Ideal Mechanical Advantage

Divide the Distance $_{\text {in }}$ by the Distance ${ }_{\text {out }}$ or the Force ${ }_{\text {out }}$ by the Force $_{\text {in }}$ to find the mechanical advantage.
Force $_{\text {in }}$ - $^{\text {Distance }_{\text {in }}}=$ Force $_{\text {out }}{ }^{\bullet}$ Distance $_{\text {out }}$

The ideal mechanical advantage of the jack can be represented as: "300" or "300:1" or "300 to 1"
38. Calculate the Force out: : Show your work.

Force $_{\text {in }}=231 \mathrm{lbs}$
Ideal
Mechanical
Advantage $=55$

$$
\text { Force }_{\text {out }}=\square
$$

Distance for Force

Set up the $4.5 \mathrm{ml}-14 \mathrm{ml}$ hydraulic system, as shown, so it will lift a book. Experiment with it and answer the questions below.
39. If piston (A) moves 1 inch, piston (B) moves: \square
40. Complete the following formula to find the force at piston (B) $\left(\right.$ Force $\left._{\text {out }}\right)$.

[^1]
FLUID POWER LAB

Force the Distance

Set up the $4.5 \mathrm{ml}-14 \mathrm{ml}$ hydraulic system, as shown, so it will lift a book. Experiment with it and answer the questions below.
42. If piston (B) moves 1 inch, piston (A) moves:
43. Complete the following formula to find the force at piston (A) (Force $\left.{ }_{\text {out }}\right)$.

Calculate the Force ${ }_{\text {out }}$ by cross multiplying.

44. Mechanical Advantage $=\square$
_ Calculate by dividing the Force ${ }_{\text {out }}$ by the Force $_{\text {in }}$ or the Distance in by the Distance ${ }_{\text {out }}$

HINT: This number should be less than one because this system loses force to gain distance.

HYDRAULIC CYLINDERS = A LEVER

Two connected hydraulic cylinders act like a lever, changing the force, distance, and direction of movement.
45. Label the Force $_{\text {in }}$ and the Force ${ }_{\text {out }}$ on the cylinders below to show a mechanical advantage similar to the lever.

46. Label the Force $_{\text {in }}$ and the Force ${ }_{\text {out }}$ on the cylinders below to show a mechanical advantage similar to the lever.

FLUTD POWER LAB

HOW DOES MECHANICAL ADVANTAGE DEVELOP?

1. 81 bs of force is applied to piston (B).
2. The 81 bs of force is divided over the area of piston (B) and transferred to the fluid (©):

| $\frac{\text { Force }}{\text { Piston's Area }}$ | $\frac{8 \mathrm{lbs}}{4 \mathrm{in}^{2}}=2 \mathrm{lbs} / \mathrm{in}^{2}$ |
| :--- | :--- | Fluid Pressure

4. Pressure is transferred through fluid © (Pascal's Law) to piston (D).

4 Fluid © presses against every square inch of piston (D), creating 32lbs of force:

Piston (D) applies a downward force of 32lbs.

FUUTD POWER LAB

YOU'RE ON YOUR OWN

A. Find the Force ${ }_{\text {out }}$ Distance $_{\text {out }}$ and mechanical advantage of the hydraulic system below. Show all work.

Pressure developed from force applied over piston area:

\square

FUUD POWER LAB

A FLUID POWERED INVENTION

B. Design and draw an invention that uses hydraulics or pneumatics to perform one of the following tasks: open a jar, crack an egg, or toss a ball.

Presentation	Is it well drawn and easy to understand?	13
Function	Could it really work? Does it use fluid power?	13
Creativity	Does it solve the task in a new and different way?	14

CONGRATULATIONS!!

You've finished the Fluid Power Lab.
It's time to create a fluid powered contraption.

FLUID POWER LAB

ASSEMBLY REFERENCE SHEET

Use the tubing lengths specified for your hydraulic activity (shown on page 2).

Pneumatics

Have one cylinder all the way open.
2 One cylinder all the way closed.

Connect cylinders with tubing.
(use length shown on page 2).

Hydraulics

1. Fill both cylinders with water:
(A) Push cylinder piston in
(B) Place cylinder tip underwater
© Pull piston back to completely fill the cylinder with water
 water by pushing the piston completely in.

4 Attach the water-filled tubing to the remaining water-filled cylinder from Step 1.

5. Insert a cylinder screw as shown to prevent the tubing from pulling off.

[^0]: Device
 How does it use hydraulics?

[^1]: 41. Mechanical Advantage $=$ \square
