PAGE 1

How IT Works

There are many ways to create a sorting mechanism. The illustration show how the sample sorter works.

PAGE 2

Cut six 125mm (5in) dowels and press them into 4 connector strips as shown.

STEP#3

1. Cut off an adaptor pin.

2. Tap or push the motor shaft into the adaptor pin from.

Warning: Do not hold the motor from the side when pushing on the adaptor pin. Holding the motor from the side could cause the motor back to fall off.

3. Press on a 10 tooth gear.

Note: The project motor is design to run on 3-6 volts DC.

PAGE 3

PAGE 4

Complete the "Gears Activity" sheet if this box is selected.

This is a great time to spin your gears (by hand or powering your motor (3-6 volts).

STEP #11

It is now time to make the frames for the sorting screens. Make two of the frames shown below.

STEP #12

Cut dowels \blacksquare and \blacksquare (we are not telling your how long) to hold the one frame from Step #11 at an angle. These dowels can me moved later to change how your the screen moves material.

PAGE 5

STEP #14

Experiment with the hole position of the connector strip on machine screw \(\mathbb{Z} \). Turn the gears (with the motor or by hand). Find what hole placement will provide the best movement for your screen.

PAGE 6

STEP #14

Linkage movement can be further slowed and power increased using pulleys. Above is a sample configuration.

STEP #14 Screen material can now be attached to your frames and placed on your sorter.