

UNDERSTANDING PH'

pH (Potential of Hydrogen): scale measure of the hydrogen ion concentration in a fluid, from acidic to neutral (water) to basic.

Use the above pH chart to answer the questions:

- 4. If a fluid turns **green** after a **universal indicator** is added, then its pH tends _____. If it turns **red**, its pH tends _____.

3. Lemon Juice has a pH of 2. That would make it a(n) _____?

5. If an acid and a base mix equally, it can produce a(n) _____ fluid. HINT: Acids and bases can "cancel" each other out in fluids.

MEASURING PH

Indicator Technique:

Use a **pH test kit**. Special **pH indicator paper** is dipped or soaked in the test fluid (such as your **nutrient solution**) and the resulting color can be compared to the standard colors of the **pH chart**.

This technique is **subjective** (based on tester's opinions) giving it a "higher margin of error" (misreading the pH).

pH Test Kit

Digital pH Meter & Probe Technique:

Favored by scientists, digital measurement uses a **pH meter** and **pH probe**. The probe is placed in the **test fluid**, and **electrodes** respond to the liquid. The meter shows the difference in **voltage**, determining the pH. This technique is expensive, but more **accurate** (closer to the true value).

pH Meter & Probe

Litmus Strip Technique:

Litmus Strips contain either an **acid** (red) or **base** (blue). When dipped or soaked, the red strips turn blue if the **test fluid** is basic, and the blue strips turn red if they interact with an acid.

This technique is cheap and portable, but less **accurate** (closer to the true value).

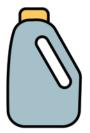
Litmus Strips

Which pH technique would be best for your hydroponic system?

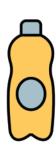
PHLAB

Objective: Determine the pH of common household fluids.

How accurate will your hypothesis (prediction) be?


Procedure:

- Do not swallow or taste any of the test fluids.
- Wash your hands prior to handling pH or Litmus Strips
- You may bring in fluids to test, if the liquids are:
 - Teacher Approved
 - o Non-Hazardous (no sharp edges, harmful chemicals, etc.)


Challenge Supplies:

- pH Test Kit or Litmus Strips
- A variety of fluids to test (lemon juice, bleach)
- Container or cup for fluids
- Disposable gloves (optional)

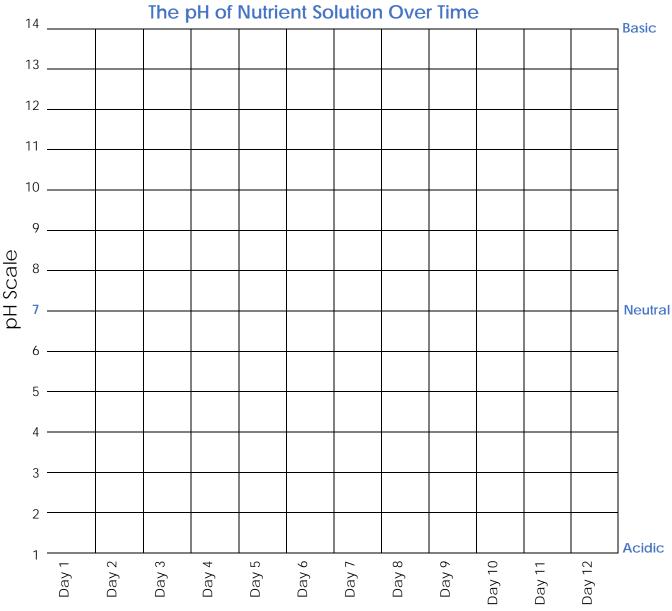
Teacher's Note: this lab activity can be completed without a pH testing method too! Have students predict whether common household fluids are **acidic**, **basic** or **neutral** and then compare their hypotheses to the scientific standard results (included).

MEASURING	H
------------------	---

Name(s): _			
Set:			

Record the pH test results for each fluid. Feel free to add your own.

Fluid	Hypothesis	pH Test #1	pH Test #2	pH Test #3	pH Test #4
Distilled Water					
Tap Water					
Lemon Juice					
Liquid Hand Soap					
Vinegar					
Laundry Detergent					
Tomato Juice					
Light Colored Soda					
Coffee					
Bleach					


Fluid	Hypothesis	pH Test #1	pH Test #2	pH Test #3	pH Test #4

Set:			
Name(s):			

MEASURING PH

Record the pH measurement of your **Nutrient Solution**. At the same time, every day (or a similar interval), test the fluid and chart data on the graph below. Did the pH change over time? Stay the same? How did it compare to a **control** (tap water)?

Daily Nutrient Solution pH Measurement (Independent Variable)

Fluid	Standard pH
Distilled Water	7 (neutral)
Tap Water	Varies (6-8) (neutral)
Lemon Juice	2 (acidic)
Liquid Hand Soap	9-10 (basic)
Vinegar	2 (acidic)
Laundry Detergent	(7-10) (neutral- basic)
Tomato Juice	4 (acidic)
Light Colored Soda	2.5 (acidic)
Coffee	2 (acidic)
Bleach	12.6 (basic)
Milk	6.5 (acidic)

Soda Pop Challenge - Optional

Challenge: Does the brand of soda pop affect its pH measurement?

Constraints:

- Do not swallow or taste the soda pop
- You may bring in soda pop to test, if:
 - Teacher Approved
 - Non-Hazardous

Challenge Supplies:

- pH Test Kit or Litmus Strips
- A variety of soda pop (cola, seltzer)
- Container or cup for fluids

Bonus: After taking pH measurements, drop a tarnished **penny** in each soda sample and wait a week.

Observe the penny's changes, and record the pH again.

Did the soda's color **correlate** (relate) to its pH measurement?

